Privacy-preserving horizontally partitioned linear programs with inequality constraints

نویسندگان

  • Wei Li
  • Haohao Li
  • Chongyang Deng
چکیده

In this paper we solve the open problem, finding the solutions for privacy-preserving horizontally partitioned linear programs with inequality constraints, proposed recently by Mangasarian, O.L. ( Privacy-preserving horizontally partitioned linear programs, Optim Lett 2011, to appear).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inference-proof approach to privacy-preserving horizontally partitioned linear programs

Mangasarian (Optim. Lett., 6(3), 431–436, 2012) proposed a constraints transformation based approach to securely solving the horizontally partitioned linear programs among multiple entities—every entity holds its own private equality constraints. More recently, Li et al. (Optim. Lett., doi:10.1007/s11590-011-0403-2, 2012) extended the transformation approach to horizontally partitioned linear p...

متن کامل

Privacy-preserving vertically partitioned linear program with nonnegativity constraints

We propose a simple privacy-preserving reformulation of a linear program with inequality constraints and nonnegativity constraints. By employing two random matrix transformation we construct a secure linear program based on the privately held data without revealing that data. The secure linear program has the same minimum value as the original linear program. Component groups of the solution of...

متن کامل

Privacy-preserving horizontally partitioned linear programs

We propose a simple privacy-preserving reformulation of a linear program whose equality constraint matrix is partitioned into groups of rows. Each group of matrix rows and its corresponding right hand side vector are owned by a distinct private entity that is unwilling to share or make public its row group or right hand side vector. By multiplying each privately held constraint group by an appr...

متن کامل

Privacy-Preserving Decision Tree Classification Over Horizontally Partitioned Data

Protection of privacy is one of important problems in data mining. The unwillingness to share their data frequently results in failure of collaborative data mining. This paper studies how to build a decision tree classifier under the following scenario: a database is horizontally partitioned into multiple pieces, with each piece owned by a particular party. All the parties want to build a decis...

متن کامل

Privacy Preserving ID3 over Horizontally, Vertically and Grid Partitioned Data

We consider privacy preserving decision tree induction via ID3 in the case where the training data is horizontally or vertically distributed. Furthermore, we consider the same problem in the case where the data is both horizontally and vertically distributed, a situation we refer to as grid partitioned data. We give an algorithm for privacy preserving ID3 over horizontally partitioned data invo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Letters

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013